Ordem de limite - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

Ordem de limite - tradução para russo

Limite cardinal; Cardinal de limite fraco; Cardinal de limite forte

Ordem de limite      
лимитированный приказ, лимитный приказ, заявка с ограничением цены
relação de ordem         
RELAÇÃO BINÁRIA EM UM CONJUNTO
Conjunto ordenado; Relação de ordem total; Ordenação total; Ordem parcial; Parcialmente ordenado; Relação de Ordem; Relação de ordem parcial; Ordem total
отношение упорядочения; отношение порядка
conjunto ordenado         
RELAÇÃO BINÁRIA EM UM CONJUNTO
Conjunto ordenado; Relação de ordem total; Ordenação total; Ordem parcial; Parcialmente ordenado; Relação de Ordem; Relação de ordem parcial; Ordem total
упорядоченный набор

Definição

ДЕ-ЮРЕ
[дэ, рэ], нареч., юр.
Юридически, формально (в отличие от де-факто).

Wikipédia

Cardinal limite

Em matemática, os cardinais limites são certos números cardinais. Um número cardinal λ é um cardinal de limite fraco se λ não é um cardinal sucessor nem zero. Isso significa que não se pode "alcançar" λ de outro cardinal por operações sucessivas repetidas. Esses cardinais às vezes são chamados simplesmente de "cardenais limitados" quando o contexto é claro.

Um cardinal λ é um cardinal de limite forte se não puder ser alcançado por operações repetidas do conjunto de potência. Isso significa que λ é diferente de zero e, para todos κ < λ, 2κ < λ. Todo cardinal com limite forte também é um cardinal com limite fraco, porque κ+ ≤ 2κ para todo cardinal κ, onde κ+ denota o cardinal sucessor de κ.

O primeiro cardinal infinito, 0 {\displaystyle \aleph _{0}} (Aleph-zero), é um cardinal de limite forte e, portanto, também é um cardinal de limite fraco.